L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome.

نویسندگان

  • Chi-un Choe
  • Christine Nabuurs
  • Malte C Stockebrand
  • Axel Neu
  • Patricia Nunes
  • Fabio Morellini
  • Kathrin Sauter
  • Stefan Schillemeit
  • Irm Hermans-Borgmeyer
  • Bart Marescau
  • Arend Heerschap
  • Dirk Isbrandt
چکیده

Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans.

Arginine:glycine amidinotransferase (AGAT) catalyzes the first step of creatine synthesis, resulting in the formation of guanidinoacetate, which is a substrate for creatine formation. In two female siblings with mental retardation who had brain creatine deficiency that was reversible by means of oral creatine supplementation and had low urinary guanidinoacetate concentrations, AGAT deficiency w...

متن کامل

Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies.

BACKGROUND Disorders of creatine metabolism arise from genetic alterations of arginine:glycine amidinotransferase (AGAT), guanidinoacetate methyltransferase (GAMT), and the creatine transporter. We developed a strategy for the detection of AGAT and GAMT defects by measurement of guanidinoacetate (GAA) and creatine plus creatinine (Cr+Crn) in biological fluids. METHODS Three patients with AGAT...

متن کامل

Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis.

L-arginine:glycine amidinotransferase (AT) catalyses the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the immediate precursor of creatine. We have determined the crystal structure of the recombinant human enzyme by multiple isomorphous replacement at 1.9 A resolution. A telluromethionine derivative was used in sequence assignment. The structure of AT reveals a n...

متن کامل

Biochemical and clinical characteristics of creatine deficiency syndromes.

Creatine deficiency syndromes are a newly described group of inborn errors of creatine synthesis (arginine:glycine amidinotransferase (AGAT) deficiency and guanidinoacetate methyltransferase (GAMT) deficiency) and of creatine transport (creatine transporter (CRTR) deficiency). The common clinical feature of creatine deficiency syndromes is mental retardation and epilepsy suggesting main involve...

متن کامل

Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology.

Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2013